Automated Structure Elucidation of Organic Molecules from 13C NMR Spectra Using Genetic Algorithms and Neural Networks
نویسندگان
چکیده
The automated structure elucidation of organic molecules from experimentally obtained properties is extended by an entirely new approach. A genetic algorithm is implemented that uses molecular constitution structures as individuals. With this approach, the structure of organic molecules can be optimized to meet experimental criteria, if in addition a fast and accurate method for the prediction of the used physical or chemical features is available. This is demonstrated using (13)C NMR spectrum as readily obtainable information. (13)C NMR chemical shift, intensity, and multiplicity information is available from (13)C NMR DEPT spectra. By means of artificial neural networks a fast and accurate method for calculating the (13)C NMR spectrum of the generated structures exists. The approach is limited by the size of the constitutional space that has to be searched and by the accuracy of the shift prediction for the unknown substance. The method is implemented and tested successfully for organic molecules with up to 20 non-hydrogen atoms.
منابع مشابه
Novel methods of automated structure elucidation based on 13C NMR spectroscopy.
Three new approaches for automated structure elucidations of organic molecules using NMR spectroscopic data were introduced recently. These approaches apply a neural network 13C NMR chemical shift prediction method to rank the results of structure generators by their agreement of the predicted and experimental chemical shifts. These three existing implementations are compared using realistic ex...
متن کامل13C NMR Chemical Shift Prediction of the sp3 Carbon Atoms in the Position Relative to the Double Bond in Acyclic Alkenes
The 13C NMR chemical shift of sp3 carbon atoms situated in the R position relative to the double bond in acyclic alkenes was estimated with multilayer feedforward artificial neural networks (ANNs) and multilinear regression (MLR), using as structural descriptors a topo-stereochemical code which characterizes the environment of the resonating carbon atom. The predictive ability of the two models...
متن کاملRanking MOLGEN Structure Proposals by C NMR Chemical Shift Prediction with ANALYZE
Artificial neural networks are capable of predicting the C chemical shifts of organic molecules nearly as fast as incremental methods while maintaining the accuracy of database methods. In this article, we apply a recently developed neural network (Meiler et. al., J. Chem. Inf. Comput. Sci. 2000, 40, 1169-1176), to the screening of large sets of molecules obtained by structure generators in the...
متن کاملYarn tenacity modeling using artificial neural networks and development of a decision support system based on genetic algorithms
Yarn tenacity is one of the most important properties in yarn production. This paper addresses modeling of yarn tenacity as well as optimally determining the amounts of the effective inputs to produce yarn with desired tenacity. The artificial neural network is used as a suitable structure for tenacity modeling of cotton yarn with 30 Ne. As the first step for modeling, the empirical data is col...
متن کاملFast Determination of 13C NMR Chemical Shifts Using Artificial Neural Networks
Nine different artificial neural networks were trained with the spherically encoded chemical environments of more than 500000 carbon atoms to predict their 13C NMR chemical shifts. Based on these results the PC-program "C_shift" was developed which allows the calculation of the 13C NMR spectra of any proposed molecular structure consisting of the covalently bonded elements C, H, N, O, P, S and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of chemical information and computer sciences
دوره 41 6 شماره
صفحات -
تاریخ انتشار 2001